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ABSTRACT 
This paper provides extensions to the theory and the 
computational aspects of the Fellegi-Holt Model of 
Editing (JASA 1976).  If implicit edits can be generated 
prior to editing, then error localization (finding the 
minimum number of fields to impute) can be quite rapid.  
In some situations, not all of the implicit edits can be 
generated because of the great number (> 10^30) of 
distinct edit patterns.  The ideas in this paper are 
intended to determine more rapidly the approximate 
minimal number of fields to change in situations where 
not all implicit edits can be generated prior to editing.  
As a special case, the formal validity of Bankier’s 
Nearest-Neighbour Imputation Method (NIM) is 
demonstrated. 
 
Keywords: set-covering; integer programming; error 
localization 
 
1.  INTRODUCTION 
   Statistical data editing (SDE) are those methods that 
can be used to edit (i.e., clean-up) and impute (fill-in) 
missing or contradictory data.  The result of SDE is data 
that can be used for intended analytic purposes.  These 
include primary purposes such as estimation of totals 
and subtotals for publications that are free of self-
contradictory information.  The published totals do not 
contradict published totals in other sources.  Self-
contradictory information might include groups of items 
that do not add to desired subtotals or totals for 
subgroups that exceed a known proportion of the total 
for the entire group.  The uses of the data after SDE 
might be preparation of variances of estimates for a 
number of sub-domains and micro-data analyses.  If 
only a few published totals need to be accurate, then an 
efficient use of resources may be to perform detailed 
edits on only a few records that effect the estimated 
totals.  If many analyses need to be performed on a large 
number of sub-domains or if the full set of accurate 
micro-data are needed, then a very large number of 
edits, follow-up, and corrections may be needed.   
    Fellegi and Holt (1976, hereafter FH) provided a 
seminal model for SDE.  Their methods have the virtues 
that, in one pass through the data, an edit-failing record 
can be assured to satisfy all edits and that the logical 
consistency of the entire set of edits can be checked 
prior to the receipt of data.  The implementations of the 
system have had additional advantages over traditional 

if-then-else rule edit systems because edits reside in 
easily modified tables and computer code needs no 
modification.  FH had three goals that we paraphrase: 
 
  1. The data in each record should be made to satisfy all 
edits by changing the fewest possible variables (fields). 
  2. Imputation rules should derive automatically from 
edit rules. 
  3. When imputation is necessary, it should maintain the 
joint distribution of variables. 
 
   Fellegi and Holt were the first to demonstrate 
precisely what information was needed for correcting a 
record.  By correcting, we mean changing (or filling in) 
values of fields so that a record satisfies all of the edits.  
Prior to FH, individuals were unable to account for edits 
that did not fail with a edit-failing record and that would 
fail after values in fields were changed so that the 
initially failing edits would no longer fail.  In addition to 
(explicit) edits that are originally defined, FH showed 
that precise knowledge of implicit edits was needed.  
Implicit edits are those that can be logically derived 
from explicit edits.  FH (Theorem 1) proved that implicit 
edits are needed for solving the problem of goal 1.  Goal 
1 is referred as the error localization (EL) problem.  FH 
provided an inductive, existence-type proof to their 
Theorem 1.  Their solution, however, did not deal with 
many of the practical computational aspects of the 
problem that, in the case of discrete data, were 
considered by Garfinkel, Kunnathur, and Liepins (1986, 
hereafter GKL), Winkler (1997), and Chen (1998).  
Because the error localization problem is NP-complete 
(GKL), reducing computation is the most important 
aspect in implementing a FH-based edit system.  
   The main purpose of this paper is to provide a method 
for EL when most, but not all, implicit edits are 
generated prior to editing.  The algorithms are much 
faster than the direct integer programming methods for 
EL that do not use implicit edits that have been 
computed a priori.  The speed increase is because the 
direct integer programming methods implicitly generate 
implicit edits during EL.  Many implicit edits are 
repeatedly computed.  To demonstrate our results, we 
build on ideas that are in or can be deduced from FH, 
GKL, Winkler (1997) and Chen (1998).  Each of the 
previous papers had technical lemmas that showed how 
the number of computational paths could be reduced.   
In the much longer version of this paper, we provide a 
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number of technical lemmas that further reduce the 
number of computational paths (see 
http://www.census.gov/srd/www/byyear.html).  The 
longer version gives the detail needed for understanding 
the main theorem of this paper and the subsequent new 
computational algorithms.   
   This paper is divided into a number of sections.  The 
second section gives background, notation, and 
describes some of the limitations and strengths of 
previous approaches.  It provides an example and 
several insights that serve as the motivation for the 
approach that we have adopted.  The third section 
provides extensive theory and computational methods 
that are engendered by the theory.  In the fourth section, 
we provide some discussion.  The final section consists 
of concluding remarks. 
 
2.  BACKGROUND AND PREVIOUS WORK 
   This paper only considers FH methods as they apply to 
discrete data.  Extensions to situations for numeric data 
or combinations of discrete and numeric data are 
straightforward. 
2.1.  Background on FH Theory and previous 
approaches 
  There are three error-localization methods.  The first 
and slowest method is to use direct integer programming 
methods such as branch-and-bound.  The method can 
require on the order of 10 minutes per record.  The 
second method employs variants of a cardinality 
constrained Chernikova algorithm (Rubin 1975, Filion 
and Schopiu-Kratina 1993).  The method is used in the 
GEIS system of Statistics Canada (in C, 1 second per 
record), in the CherryPi system of Statistics Netherlands 
(in Pascal, 2 seconds per record), and in the AGGIES 
system of the National Agriculture Statistical Service 
(SAS, more than one minute per record).  Because the 
methods are somewhat slow, Statistics Netherlands (De 
Waal 2000) developed the LEO system that employs 
variants of the Fourier-Motzkin elimination method (in 
Pascal, at least 10 records per second).  None of these 
methods or systems can deal, however, with large 
surveys having millions of records.  For instance, with 
the U.S. Census of Manufactures, 4 percent of 2.5 
million records (100,000) have edit records with 
failures.  This large number of records drastically 
exceeds the capability of the aforementioned systems.  It 
is not possible to clerically edit 100,000 records. Since 
most of the 100,000 are associated with small firms 
(companies), it seems reasonable to attain an FH system 
that could edit/impute all of the records automatically.  
Only the records associated with the largest companies 
would be clerically reviewed as an additional step of the 
editing.   For the U.S. Decennial Census, there are 300 
million records (see e.g., Chen, Winkler, and Hemmig 
2000). 

   In this paper, we demonstrate how all of the records 
can be error-localized when not all of the implicit edits 
can be generated a priori.  Chen (1998) and Winkler 
(1997) have shown that, if most of the implicit edits are 
generated prior to editing, then virtually all of the 
records can be properly error-localized.  The methods of 
this paper provide a means of error-localization for a 
small proportion of remaining records that cannot be 
properly corrected due to an incomplete set of implicit 
edits.  The methods are far faster than those based on 
Chernikova algorithms or Fourier-Motzkin Elimination.  
 2.2.  Bankier’s Nearest-Neighbor Imputation Method 
   Bankier (see e.g. 1997, 2000) introduced a successful 
method of using (hot-deck) donor imputation that has 
been used for the 1996 and 2001 Canadian Censuses and 
will be used for the 2006 Canadian Census.  As with 
other donor imputation systems, the method is 
dependent on having a large population of high quality 
donors.  Before describing NIM, we describe how a 
corresponding FH edit system that uses hot-deck 
imputation would work.  The FH edit system would 
determine the minimum number of fields to change.  A 
priori matching rules would be developed to select hot-
deck donors from the set of records that satisfy all edits.  
If there are suitable donors, then imputed fields from the 
hot-deck donors will maintain the univariate 
distributions of the respondents.  Two difficulties are 
associated with systems (either FH or if-then-else) that 
use hot-deck imputation.  The first is that the matching 
rules may not be as good as they can be.  This has been 
noted as a problem in the 1990 U.S. Decennial Census, 
the 1991 Canadian Census, and the 1991 British Census.  
The second is that there may not be enough suitable 
donors.  The second problem is often not as serious in a 
census as it is in a smaller survey. 
   Bankier’s NIM proceeds primarily by using donors.  
Each edit-failing record is matched with a large subset 
(say 2,000) of records that satisfy all of the edits.  The 
ones, say 40, that have the smallest deviations in terms 
of the number of fields differing from the edit failing 
record are retained.  If the same edit-failing record were 
considered by the Fellegi-Holt method and a donor was 
found that was in the 2,000 records that were searched 
as potential donors, then NIM could necessarily get the 
same donor substitution as the FH method.  Even if it 
did not have the exact same donor, it would get a 
solution that was optimal in terms of the weighted, 
minimal number of fields to impute.  NIM has an 
effective heuristic that allows it to deal with numeric 
data.  Age (because of the number of values it assumes) 
can be considered numeric.  NIM has further heuristics 
that work somewhat as follows.  Each of the 40 edit-
passing records differs from the edit-failing record on a 
set of fields.  Fast heuristics look at subsets to determine 
if the record resulting from changing the values in the 
subset satisfy all edits.  From the 40, the five best (in 



terms of weighted minimal number of fields changed) 
are selected.  One of the five is randomly selected as the 
donor for the hot-deck imputation. 
   There are two crucial advantages for a NIM system.  
The first is that all of the imputed records satisfy all of 
the edits.  The second is that it finds the best matching 
rules automatically.  From the standpoint of this paper, 
there is another crucial insight.   By considering the set 
of fields in a donor record that differ from the edit-
failing record, it is possible to efficiently fill-in 
(determine the subset of fields to change) a record.  The 
potential value states are always two.  Either leave the 
value in a field to its value in the original edit-failing 
record or change it to the value in the potential donor 
record.  This paper gives ideas that characterize and 
generalize ideas from NIM.  A series of technical 
lemmas (in the longer version) yield fast algorithms for 
filling in a record in situations where not all of the 
implicit edits can be generated.  If some of implicit edits 
are not present, then a cover of the entering fields in the 
failed edits may not yield a set of fields to change that 
yields an edit-passing record.  By a cover, we mean a set 
of fields that enter every failing edit.  The lemmas give a 
quick way of determining additional fields that are 
needed for error-localization. 
2.3.  Notation, additional background and technical 
lemmas 
   A record r=(y1,...,yn) in a computer file can have n 
fields subject to edits.  For discrete edits, y takes values 
in J Zn, the product space of integers.  Each field yi, 
i=1,...,n, corresponds to a variable that is coded.  For 
instance, y1 might take values 1=male and 2=female.  y2 
might take values 1=single, 2=divorced, and 3=married.  
y3 might correspond to age and take values 0 thru 99 or 
1 thru 99.  We set Rn equal to the set of values that field 
yn can assume and D = J Rn.  For convenience, we 
always assume that values in a Rn take values 1 thru kn 
where the kn integers are recodes of the kn value states 
associated with field yn.  An edit E is a point set P(E) ⊆ 
D.  A record r fails E is y ∈P(E).  FH showed that an 
arbitrary edit E can be expressed as a union of edits Ei of 
a particular form.  Each Ei can be expressed as J Ein 
where Ein is the set of values assumed by the nth 
component of the points yn in edit Ei.  This form of Ei is 
called the normal form.  If Ein is a proper subset of Rn, 
then field n is said to enter edit Ei and edit Ei is involved 
with field n.  Entering fields of an edit E are those fields 
that are restricted by the edit E.  If E = {E1, E2 ,…, Em }, 
then use P(E) to denote the union  ∪ { P(Ei ): Ei ∈ E}.  
   If r0 ∈ P(E) for some set of edits E, then the EL 
problem is to find (or possibly minimize) ∑ j ∈ J cj xj 
subject to  
 
   y in D - P(E)  
 

and  
 
  xj = 1 if  yj = yj

0                                           (2.1) 
      = 0 otherwise, 
 
where j = 1, …, m.  The coefficient cj is a confidence 
weight.  In some situations, all the cj are set to one.   The 
vector x = (x1,…,xm) tracks the specific fields in the 
original record r0 = (y1

0,...,yn
0) that are changed.   

   Let r0 in P(E).  Then consider the set-covering 
problem (SCP): 
 
  minimize ∑ j ∈ J cj xj                                        (2.2) 
 
  subject to  ∑ j ∈ J aij xj ≥ 1,  Ei in EF(r

0)   
 
  where  
 
   aij = 1 if field j enters Ei 
        = 0 otherwise 
 
and  EF(r

0) is the set of edits that are failed by r0.   FH 
showed that the solution to (2.2) is the same as the 
solution to (2.1) provided the set E of edits is a complete 
set of edits. 
    In this paper, we are concerned with performing EL 
when the set of edit E is incomplete.  Two approaches 
might be taken.  The first is to use a heuristic to quickly 
determine additional fields that might be changed.  
Within the first approach, there are two variants.  In the 
first variant, exemplified by NIM, the donor record 
yields a superset J* of the set of fields that must be 
changed.  In the second variant, we identify a 
preliminary set of fields J to change (based on an 
incomplete set of edits E.  The preliminary set is also 
extended to a superset J* that must be changed.  In each 
of the variants, a subset is then identified that represents 
the actual fields to change.  In the second approach, 
additional implicit edits are located during the course of 
EL.  There are two variants.  In this paper, we use a 
method that utilizes information obtained during the 
edit-generation process (e.g., Winkler 1997, Chen 1998) 
and new ideas of this paper.  In the variant due to GKL, 
a cutting plane algorithm (called GKL Algorithm 2) is 
used to identify all the failing edits during EL.  Because 
Algorithm 2 gives significant insights into some of the 
information needed for reducing computation, we state 
it. 
 
  GKL Algorithm 2 

1. Solve the SCP (2.2) and denote the solution x*. 
2. Let J = {j | xj* = 1}.  Fix the values of rj for j 

∉J at rj0, but for every j in J, let rj assume each 
of the values of Rj.  Test each of the Π j ∈ J  | Rj | 
possible records y so defined for membership 
in D – P(E) where E is the existing set of 



explicit and implicit edits.  If no such record is 
found, x* specifies a solution to (2.1).  
Otherwise, go to Step 3. 

3. Find any prime cover v0 to  
 

vQ ≥ 1                                                (2.3) 
 

               v binary 
 
               where Q = (qik) and 
 
               qik = 1  if Ei is failed by the kth record y of 
                               Step 2 
                    = 0  otherwise. 
 
               Let I0 = {i | vi

0 = 1}. 
 
        4.    Generate the implied edit E0 given by 
 
                E0j =  ∩ {Eij  i ∈ I0 } , j ∈ J             (2.4) 
                     =     Rj,                   j ∉ J. 
 
                Let EF(r0) = EF(r0) ∪ {E0}.  Go to Step 1. 
 
   GKL Algorithm 2 gives a way of finding all of the 
additional failing edits of the form E0 for a record r0.  
Additionally, if we take any entering field i0 in E0, we 
can iteratively expand the initial cover J to J1 = J ∪ {i0}.  
At the completion of the iteration process, we have a 
prime cover of the failing edits for record r0.  As noted 
by GKL, the excessive number Π j ∈ J  | Rj | of patterns of 
Step 2 typically make this procedure computationally 
intractable except in very small situations. 
    Our alternative to GKL Algorithm 2 will alleviate 
much of the excessive computation by making use of 
much more of the information available from the edit-
generation process of creating an incomplete set of edits.   
 
3.  THEORY 
   This section contains theory and explanations that are 
intended to make the understanding of the 
computational algorithms as straightforward as possible.  
In the first section, we cover background on how the 
failing explicit and implicit edits are used to determine 
the exact set of fields that must be changed in an edit-
failing record r.  Furthermore, we show how record r is 
filled in.  By fill in, we mean how new values are 
imputed into fields in r so that record r will no longer 
fail any of the explicit edits.  Let the set of explicit and 
implicit edits E be incomplete.  If r is a record that fails 
an implicit edit that is not in E, then we indicate what 
can go wrong as the record is filled in. In the second 
section, we provide the main theorem that additionally 
shows, for any set R of records, how to quickly generate 
missing implicit edits “on-the-fly.”  In the fourth 

section, we show that the Nearest Neighbor Imputation 
Method (Bankier 1997, 2000) can be considered a 
special case of the theoretical results of this paper.  
Because the main theorem and the computational 
methods represent an extension of existing FH theory, 
NIM is consistent with the FH Theory.   
3.1.  Basic Background 
   FH theory gives that any prime cover J*of the entering 
fields of the complete set E of failing explicit and 
implicit edits can lead to a record r’ that satisfies all 
edits.  The record r’ differs from the original record r 
only for the values in the fields in the cover J*.  A cover 
is prime if no subset of J* is also a cover.  Any prime 
cover J* of the failing explicit and implicit edits is said 
to be an error-localization (EL) solution.  It satisfies the 
conditions (2.3) and (2.1)  
   Assume that an incomplete set of explicit and implicit 
edits exists.  For the remainder of this paper, we assume 
that, at a minimum, the set of implicit edits must include 
all first-level implicit edits.  There are several different 
ways in which error localization could be performed in 
the main edit program.  First, if the set of incomplete 
edits is assumed to be nearly complete, then it may be 
best to take a cover J* of the failing edits in the 
incomplete set and fail to fill-in a record.   It may be 
sufficient to find additional fields that need to be added 
to the set of fields in J*.  Second, it may be best to 
immediately look for fields I* to add to cover J* prior to 
doing error localization.  Third, if J* is missing a 
moderate number of implicit edits, then it may be better 
to generate additional implicit edits based on the 
existing set of failing edits.  The generation would be an 
efficient hybrid of the GKL algorithm 2 that targets only 
one field at a time.  Suitable test decks may be good for 
finding additional implicit edits prior to running the 
main edit program. 
3.2.  Main Theorem 
   Let us assume that incomplete set E contains most of 
the implicit edits.  It is very rapid to expand E to E’ with 
implicit edits that are found via Lemma 7 (see longer 
version).   For a given set of records R, if E is expanded 
to E’, then set E’ would necessarily contain all implicit 
edits that fail for R.   The generalization of Lemma 7 to 
situations in which a field can assume more than two 
values is straightforward (see the appendix).  The 
generalization to situations when skip patterns are 
present (on the survey form and in the set of edits) is not 
straightforward.  It involves a series of technical lemmas 
and results that extend Winkler (1997). 
   We are now in the position to state the main theorem. 
 
Theorem 1.  Let E be an incomplete set of edits.  Let R 
be a set of records that fail edits in E.  Let r ∈ R be a 
record that fails at least one implicit edit that is not in E.   
Let EF(r) be the set of implicit edits in E that are failed 
by record r.  Let F={f1, …, fn}  be the set of fields that 



are a prime cover of EF(r).  Then it is possible to very 
quickly find a set of fields Fr ={fn+1, …, fq}such that F ∪ 
Fr is an EL solution for r.  Furthermore, it is possible to 
find the implicit edits Emr that are failed by r that are not 
in EF(r).   
 
Corollary 1.  Let E be an incomplete set of edits.  Let R 
be a set of records that fail edits in E.  Then E can be 
expanded to a set of edits E’ that contain all of the 
implicit edits that fail for records in R. 
 
   In the situation when there are no skip patterns, the 
algorithm is straightforward. 
 
Algorithm NS1 (no skip patterns) 

1. Let EF(r
0) be the set of failing edits for record 

r0.  Solve the SCP (2.2) and denote the solution 
x*. 

2. Let J = {j | xj* = 1}.  Fix the values of yj for j 
∉J at yj0.  For each j ∈ J, let Ej

c  =  ∩ {Fji
c  , j ∈ 

J, Ei ∈ EF(r
0)} be the intersection of the 

complements of the jth entering fields.   If 
every value fj in Ej

c yields a newly failing 
explicit edit Ek(j) , then generate a new implicit 
edit Ik(j)  that fails for record r0.   If, for all j ∈ J, 
there exists no such Ek(j) , then x* is a solution 
to (2.1); else let E1 = {I k(j) , j ∈ J} be the set of 
new implicit edits.  Let EF(r

0) = EF(r
0) ∪ E1.  

Go to Step 1.    
 
An alternative, much faster algorithm is 
 
Algorithm NS2 (no skip patterns) 

1. Let EF(r
0) be the set of failing edits for record 

r0.  Solve the SCP (2.2) and denote the solution 
x*. 

2. Let J = {j | xj* = 1}.   
3. Fix the values of yj for j ∉J at yj0.  For each j ∈ 

J, let Ej
c  =  ∩ {Fji

c  , j ∈ J, Ei ∈ EF(r
0)} be the 

intersection of the complements of the jth 
entering fields.   If every value fj in Ej

c yields a 
newly failing explicit edit  Ek(j) , then  let d(j) be 
a complementary entering field in Ek(j)  that is 
not in J.  If, for j ∈ J, there exists no such Ek(j) , 
then go to Step 4; else let J1 = { d(j), j ∈ J} and 
J = J ∪ J1.  Go to Step 2.   

4.  Find a subset of J that yields a solution to 
(2.1). 

 
   Algorithm NS2 is far faster than Algorithm NS1 
because new implicit edits do not need to be computed 
at intermediate stages of the algorithm.  Algorithm NS2 
will generally not yield a minimal solution to (2.1).  
Algorithm NS1 can yield a minimal solution to (2.1) if a 
branch-and-bound or similarly appropriate algorithm is 

applied to (2.2) with the new set of implicit edits that 
fail for record r0.   Algorithm NS1 is far faster than GKL 
Algorithm 2 because it does not require enumerating all 
the Π j ∈ J  | Rj | possible records y associated with the 
cover J and finding all existing edits that fail for them. 
   The heuristic algorithms of Winkler (1997) and Chen 
(1998) generate at least 90% of the implicit edits for 
large survey situations in less than 24 hours.  Because a 
survey will not contain nearly as many records as there 
are in the product space or in the complete set of 
implicit edits, a more practical day-to-day procedure 
may be as follows.  Generate 90% of the implicit edits 
using the heuristic algorithms.  For a given set of survey 
records, generate the remaining implicit edits “on-the-
fly” in the main edit program. 
3.3.  The Nearest-Neighbour Imputation System 
   Bankier (1997, 2000) introduced the Nearest-
Neighbour Imputation Method (NIM).   NIM has always 
been suitable for nearly discrete data fields such as age 
that are very similar to numeric fields.  Bankier (2000) 
shows how NIM is extended to situations involving 
general continuous data.  For convenience, we will only 
consider the discrete data situation.   NIM has two 
stages.  In the first, an edit-failing record r0 is compared 
with a large set of edit-passing records.  Using a metric 
that counts the number of fields that differ between the 
records, a group G of edit-passing records that differ on 
the smallest number of fields is obtained.  Each record r 
in G differs from record r0 on a number of fields Fr.  Fast 
heuristics determine the approximate minimal number of 
fields Fr’ in Fr that can be changed and still yield an edit-
passing record.  The final imputation for record r0 is 
obtained by simple random sampling of those records 
that are closest in terms of the number of fields in the 
sets Fr’.  
   In potential donor records, NIM considers all of the 
fields that differ from the edit-failing record.  Assume 
the initial number of differing fields is N.  To determine 
the approximate minimum number of fields to change, 
NIM first determines whether single fields can be 
dropped.  This is equivalent to determining EL solutions 
consisting of N-1 fields.  If a solution can be found 
having N-1 fields, then NIM may look for solutions 
having N-2 fields and so on.  Although NIM is the direct 
inspiration for the approach used in this paper, NIM 
methods can be considered a special case of methods 
used in Lemmas 3-5 (see longer version).  In NIM, there 
is a direct computational advantage because the value of 
the field that must be substituted is already known.  The 
following is another corollary to the theorem of this 
paper. 
 
Corollary 2.  The Nearest-Neighbor Imputation Method 
(NIM) is consistent with the (computational) extensions 
of the Fellegi-Holt model of statistical data editing as 
detailed in this paper. 



 
   If there is a very large set of suitable donors, then NIM 
will get solutions (in terms of the number of fields 
changed) that are as good as those obtained by FH.  
NIM will automatically find the best nearest-neighbor 
matching rules.  NIM drastically reduces computation 
because it only considers computational paths associated 
with the available donors.  It only considers changing 
the values of the fields in Fr between the existing value 
in record r0 and potential donor record r.   
 
4.  DISCUSSION 
   As with the GKL paper, this paper primarily deals 
with computational extensions of the FH model.  In a 
roundabout way, Bankier’s NIM procedure provides key 
insights that eventually led to the computational 
improvements of this paper.   Let a record r in R fails 
some of the explicit edits.  Let a donor record r1 that 
satisfies all of the edits.  Let J* be the set of fields that 
differ between r and r1.  Then J* is necessarily a superset 
of the EL solution.  The NIM method works in a top-
down method.  The heuristic method of this paper works 
in a bottom-up method in finding a superset J1* of the 
EL solution.  In both situations, an EL solution might be 
equal to the sets J* or J1*.  NIM is more straightforward 
because it limits the computational paths to either 
changing a field to the value in the donor record or 
leaving at the value in the original record.  The heuristic 
method of this paper must deal with more of the possible 
changes in field values than those of NIM. 
   The main theorem of this paper provides a slower 
method of finding all failing implicit edits for a set of 
records R.  It further allows finding minimal EL 
solutions. 
 
5.  CONCLUDING REMARKS 
   This paper describes theoretical and computational 
extensions of the Fellegi-Holt model of statistical data 
editing.  The main application is in determining the 
approximate minimum number of fields to impute in 
situations when not all implicit edits can be generated a 
priori.  As a special case, a theoretical justification for 
Bankier’s Nearest-Neighbour Imputation Method is 
given. 
 
1/ This paper reports the results of research and analysis 
undertaken by Census Bureau staff.  It has undergone a Census 
Bureau review more limited in scope than that given to official 
Census Bureau publications.  This report is released to inform 
interested parties of research and to encourage discussion.   A 
much longer version of this paper with a considerable number 
of technical lemmas is available at 
http://www.census.gov/srd/www/byyear.html.  Other 
background papers are available at 
http://www.unece.org/stats/documents/1997.10.sde.htm . 
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